Homing So

Homing So

🎉 哈喽啊~各位
github

二进制中 1 的个数 ——《C/C++ 位运算黑科技 03》

原理#

计算一个二进制数中 1 的出现次数其实很简单,只需要不断用 v & (v - 1) 移除掉最后一个 1 即可,原理可以参考这篇文章:2 的幂次方 ——《C/C++ 位运算黑科技 02》

上述方法是一个普通的思考方向,下面我会介绍另外一种思路:并行计数器,来计算二进制数中出现的 1

实际上,我们可以将这个数看作是全部由单位的计数器组成,1、0 就代表单个计数器的状态,我们只要合并相邻的计数器即可,这其实也是归并的思想。

代码#

inline unsigned count_bits(uint64_t v)
{
    v = (v & 0x5555555555555555) + ((v >> 1) & 0x5555555555555555);
    v = (v & 0x3333333333333333) + ((v >> 2) & 0x3333333333333333);
    v = (v & 0x0f0f0f0f0f0f0f0f) + ((v >> 4) & 0x0f0f0f0f0f0f0f0f);
    v = (v & 0x00ff00ff00ff00ff) + ((v >> 8) & 0x00ff00ff00ff00ff);
    v = (v & 0x0000ffff0000ffff) + ((v >> 16) & 0x0000ffff0000ffff);
    v = (v & 0x00000000ffffffff) + ((v >> 32) & 0x00000000ffffffff);
    return v;
}

inline unsigned count_bits(uint32_t v)
{
    v = (v & 0x55555555) + ((v >> 1) & 0x55555555);
    v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
    v = (v & 0x0f0f0f0f) + ((v >> 4) & 0x0f0f0f0f);
    v = (v & 0x00ff00ff) + ((v >> 8) & 0x00ff00ff);
    v = (v & 0x0000ffff) + ((v >> 16) & 0x0000ffff);
    return v;
}

inline unsigned count_bits(uint16_t v)
{
    v = (v & 0x5555) + ((v >> 1) & 0x5555);
    v = (v & 0x3333) + ((v >> 2) & 0x3333);
    v = (v & 0x0f0f) + ((v >> 4) & 0x0f0f);
    v = (v & 0x00ff) + ((v >> 8) & 0x00ff);
    return v;
}

inline unsigned count_bits(uint8_t v)
{
    v = (v & 0x55) + ((v >> 1) & 0x55);
    v = (v & 0x33) + ((v >> 2) & 0x33);
    v = (v & 0x0f) + ((v >> 4) & 0x0f);
    return v;
}

原理剖析#

下面以 1110001010011110 作为例子,来解释并行计数器合并的方法:

val1110001010011110
& 0x55550101010101010101
=0100000000010100
val >> 10111000101001111
& 0x55550101010101010101
=0101000101000101

然后两者相加就得到了相邻 2 个计数器的合并计数:1001000101011001,然后我们在以 2 个比特为单位来继续合并计数器

Val1001000101011001
& 0x33330011001100110011
=0001000100010001
Val >> 20010010001010110
& 0x33330011001100110011
=0010000000010010

然后两者相加就得到了相邻 4 个计数器的合并计数:0011000100100011,然后我们在以 4 个比特为单位来继续合并计数器

Val0011000100100011
& 0x0f0f0000111100001111
=0000000100000011
Val >> 40000001100010010
& 0x0f0f0000111100001111
=0000001100000010

然后两者相加就得到了相邻 8 个计数器的合并计数:0000010000000101,然后我们在以 8 个比特为单位来继续合并计数器

Val0000010000000101
&00ff0000000011111111
=0000000000000101
Val >> 80000000000000100
&00ff0000000011111111
=0000000000000100

然后两者相加就得到了相邻 8 个计数器的合并计数:0000000000001001,转换成十进制就是 9,与原数字中的 1 的个数是相同的。

Benchmark#

#include "benchmark/benchmark.h"

inline unsigned count_bits(uint64_t v)
{
  v = (v & 0x5555555555555555) + ((v >> 1) & 0x5555555555555555);
  v = (v & 0x3333333333333333) + ((v >> 2) & 0x3333333333333333);
  v = (v & 0x0f0f0f0f0f0f0f0f) + ((v >> 4) & 0x0f0f0f0f0f0f0f0f);
  v = (v & 0x00ff00ff00ff00ff) + ((v >> 8) & 0x00ff00ff00ff00ff);
  v = (v & 0x0000ffff0000ffff) + ((v >> 16) & 0x0000ffff0000ffff);
  v = (v & 0x00000000ffffffff) + ((v >> 32) & 0x00000000ffffffff);
  return v;
}

inline unsigned count_bits(uint32_t v)
{
  v = (v & 0x55555555) + ((v >> 1) & 0x55555555);
  v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
  v = (v & 0x0f0f0f0f) + ((v >> 4) & 0x0f0f0f0f);
  v = (v & 0x00ff00ff) + ((v >> 8) & 0x00ff00ff);
  v = (v & 0x0000ffff) + ((v >> 16) & 0x0000ffff);
  return v;
}

inline unsigned count_bits(uint16_t v)
{
  v = (v & 0x5555) + ((v >> 1) & 0x5555);
  v = (v & 0x3333) + ((v >> 2) & 0x3333);
  v = (v & 0x0f0f) + ((v >> 4) & 0x0f0f);
  v = (v & 0x00ff) + ((v >> 8) & 0x00ff);
  return v;
}

inline unsigned count_bits(uint8_t v)
{
  v = (v & 0x55) + ((v >> 1) & 0x55);
  v = (v & 0x33) + ((v >> 2) & 0x33);
  v = (v & 0x0f) + ((v >> 4) & 0x0f);
  return v;
}

static void BM_count_64(benchmark::State &state) {
  for (auto _: state) {
    uint64_t n = UINT64_MAX;
    benchmark::DoNotOptimize(count_bits(n));
  }
}

static void BM_count_32(benchmark::State &state) {
  for (auto _: state) {
    uint32_t n = UINT32_MAX;
    benchmark::DoNotOptimize(count_bits(n));
  }
}

static void BM_count_16(benchmark::State &state) {
  for (auto _: state) {
    uint16_t n = UINT16_MAX;
    benchmark::DoNotOptimize(count_bits(n));
  }
}

static void BM_count_8(benchmark::State &state) {
  for (auto _: state) {
    uint8_t n = UINT8_MAX;
    benchmark::DoNotOptimize(count_bits(n));
  }
}

BENCHMARK(BM_count_8);
BENCHMARK(BM_count_16);
BENCHMARK(BM_count_32);
BENCHMARK(BM_count_64);

BENCHMARK_MAIN();

下面是使用 MacBook Air (M1, 2020) 和 Apple clang 13.1.6 得到的结果

/Users/hominsu/CLionProjects/bit-hacks-bench/cmake-build-release-appleclang/bench/count_bits
Unable to determine clock rate from sysctl: hw.cpufrequency: No such file or directory
2022-03-27T14:09:30+08:00
Running /Users/hominsu/CLionProjects/bit-hacks-bench/cmake-build-release-appleclang/bench/count_bits
Run on (8 X 24.1205 MHz CPU s)
CPU Caches:
  L1 Data 64 KiB (x8)
  L1 Instruction 128 KiB (x8)
  L2 Unified 4096 KiB (x2)
Load Average: 2.64, 2.22, 1.79
------------------------------------------------------
Benchmark            Time             CPU   Iterations
------------------------------------------------------
BM_count_8       0.319 ns        0.319 ns   1000000000
BM_count_16      0.321 ns        0.321 ns   1000000000
BM_count_32      0.313 ns        0.313 ns   1000000000
BM_count_64      0.316 ns        0.316 ns   1000000000

下面是使用 i5-9500 和 gcc 8.5.0 (Red Hat 8.5.0-10) 在 CentOS-8-Stream 下得到的结果

/tmp/tmp.CtmwmpTLjC/cmake-build-release-1104/bench/count_bits
2022-03-27T14:10:07+08:00
Running /tmp/tmp.CtmwmpTLjC/cmake-build-release-1104/bench/count_bits
Run on (6 X 4100.35 MHz CPU s)
CPU Caches:
  L1 Data 32 KiB (x6)
  L1 Instruction 32 KiB (x6)
  L2 Unified 256 KiB (x6)
  L3 Unified 9216 KiB (x1)
Load Average: 0.57, 0.54, 0.51
------------------------------------------------------
Benchmark            Time             CPU   Iterations
------------------------------------------------------
BM_count_8       0.244 ns        0.244 ns   1000000000
BM_count_16      0.246 ns        0.246 ns   1000000000
BM_count_32      0.245 ns        0.244 ns   1000000000
BM_count_64      0.249 ns        0.248 ns   1000000000
加载中...
此文章数据所有权由区块链加密技术和智能合约保障仅归创作者所有。